Станок чпу моделиста своими руками

Станок чпу моделиста своими руками

Устройства для освещения с помощью светодиодов последние годы наступают победным маршем. На прилавках магазинов большой выбор китайских светодиодных фонариков, по цене не на много превышающих стоимость входящих в них батареек, которые светят ярче и долше чем их аналоги с лампочками внутри. За счет чего светодиод оказался в столь выигрышном положении?

Для тех, кто не в курсе: светодиод — это такой полупроводниковый прибор, в котором электрический ток преобразуется непосредственно в световое излучение. Диод - то есть ток пропускать он способен только в одном направлении (см. статью Как работает диод) Кстати, по-английски светодиод называется light emitting diode, или LED.

Светодиод состоит из полупроводникового кристалла на токонепроводящей подложке, корпуса с контактными выводами и оптической системы. Для повышения жизнестойкости пространство между кристаллом и пластиковой линзой заполнено прозрачным силиконом. Алюминиевая основа служит для отвода избыточного тепла. Которого, надо сказать, выделяется совсем небольшое количество.

Свечение в полупроводниковом кристалле возникает при рекомбинации электронов и дырок в области p-n-перехода. Область p-n-перехода, образуется контактом двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.

Чтобы p-n-переход стал излучать свет, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Чтобы соблюсти оба условия, зачастую одного р-п-перехода в кристалле оказывается недостаточно, и производители вынуждены идти на изготавление многослойных полупроводниковых структур, так называемых гетероструктур.

Очевидно, что чем больший ток проходит через светодиод, тем он светит ярче, поскольку чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Однако, из-за внутреннего сопротивления полупроводника и p-n-перехода диод нагревается и при большом токе может сгореть - расплавятся подводящие провода или будет пережжен сам полупроводник.

В отличие от ламп накаливания, электрический ток в светодиодах преобразуется непосредственно в световое излучение, при небольшом количестве потерь на нагревание. В результате светодиоды на несколько порядков более экономичны и незаменимы в тех приборах, где нагревание недопустимо. Особенностью светодиода является излучение в узкой части спектра. За это он полюбился дизайнерам для изготовления световой рекламы и декорирования помещений. УФ- и ИК-излучения, как правило, в светодиодах отсутствуют. Светодиод обладает высокой механической прочностью и надежностью. Срок службы светодиода достигает 100 тысяч часов, что почти в 100 раз больше, чем у лампочки накаливания, и в 5 — 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.

Единственный недостаток технологии - высокая стоимость. На данный момент цена одного люмена, излученного светодиодом, в 100 раз выше, чем люмена излученного лампой накаливания. Впрочем производители прогнозируют снижение этого показателя в ближайшие годы в 10 раз.

Светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра были разработаны еще в 60-х - 70-х годах прошлого столетия. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации. По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Долго не существовало светодиодов синего, сине-зеленого и белого цвета. Цвет светодиода зависит от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника и легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.

Голубые светодиоды удалось изготовить на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. Однако, у светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару). У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и оказались недолговечны. Первый голубой светодиод удалось изготовить на основе пленок нитрида галлия на сапфировой(!) подложке.

Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим тепло-отводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а ддя синих — 35%. Внешний квантовый выход — одна из основных характеристик эффективности светодиода.

Белый света от светодиодов можно получить несколькими способами. Первый — смешать цвета по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. По принципу люминесцентной лампы. Третий способ - это когда желто-зеленый или зелено-красный люминофор наносятся на голубой светодиод. При этом два или три излучения смешиваются, образуя белый или близкий к белому свет.

У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Получается целый осветительный комплекс, которым можно управлять вручную или посредством программы. Такие эффекты широко используются дизайнерами и производителями елочных гирлянд и аналогичных устройств. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Недостатком системы является неодинаковый цвет в центре светового пятна и по краям. Кроме этого, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать. Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. Недостатки их: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод.

Промышленность выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1 А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя обычно составляет более 5 В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.

Яркость светодиодов регулируется не за счет снижения напряжения питания, а так называемым методом широтно-импульсной модуляции (ШИМ). Для этого необходим специальный управляющий блок. Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет.

Светодиоды достаточно долговечны, однако срок службы у мощных светодиодов короче, чем у маломощных сигнальных. Впрочем, и он составляет в настоящее время 20 — 50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости и с изменением цвета.

Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Серьезных исследований на влияние такого освещение на зрение никогда не проводилось.

Станок чпу моделиста своими руками фото. Поделитесь новостью Станок чпу моделиста своими руками с друзьями!
Станок чпу моделиста своими руками 4
Станок чпу моделиста своими руками 1
Станок чпу моделиста своими руками 73
Станок чпу моделиста своими руками 88
Станок чпу моделиста своими руками 92
Станок чпу моделиста своими руками 95
Станок чпу моделиста своими руками 7
Станок чпу моделиста своими руками 77
Станок чпу моделиста своими руками 8
Станок чпу моделиста своими руками 27
Станок чпу моделиста своими руками 85
Станок чпу моделиста своими руками 99
Станок чпу моделиста своими руками 25
Станок чпу моделиста своими руками 97
Станок чпу моделиста своими руками 1
Станок чпу моделиста своими руками 49
Станок чпу моделиста своими руками 95
Станок чпу моделиста своими руками 15
Станок чпу моделиста своими руками 23
Станок чпу моделиста своими руками 70